

THE UNIVERSITY of EDINBURGH School of Mathematics

Using JSXGraph for diagrams and interactivity

Dr George Kinnear

G.Kinnear@ed.ac.uk

🔰 @georgekinnear

Overview

- JSXGraph and STACK
- Randomisation
- Interactivity

JSXGraph and STACK

});

// Perpendiculars and orthocenter i1 // rependiculars and of indernet if
// rependicular', [pol.borders[0], C]),
pBCA = board.create('perpendicular', [pol.borders[1], A]),
pCAB = board.create('perpendicular', [pol.borders[2], B]),
i1 = board.create('intersection', [pABc, pCAB, 0]);

// Midpoints of segments

<pre>var mAB = board.create('midpoint', [A, B]), mBC = board.create('midpoint', [B, C]), mCA = board.create('midpoint', [C, A]);</pre>
<pre>// Line bisectors and and centroid i2 var ma = board.create('segment', [mBC, A]), mb = board.create('segment', [mCA, B]), mc = board.create('segment', [mAB, C]), i2 = board.create('intersection', [ma, mc, 0]);</pre>
<pre>// Circum circle and circum center var c = board.create('circumcircle', [A, B, C], { strokeColor: '#000000', dash: 3, strokeWidth: 1, center: { name: 'i_3', withlabel:true, visible: true</pre>
}); [}]

// Euler line var euler = board.create('line', [i1, i2], { dash:1, strokeWidth: 2, strokeColor:'#901B77' });

THE UNIVERSITY of EDINBURGH School of Mathematics

Dynamic Mathematics with JavaScript

Features

- · Euclidean Geometry: Points, lines, circle, intersections, perpendicular lines, angles
- Curve plotting: Graphs, parametric curves, polar curves, data plots, Bezier curves
- Differential equations
- Turtle graphics
- Lindenmayer systems
- Interaction via sliders
- Animations
- Polynomial interpolation, spline interpolation
- Tangents, normals
- Basic support for charts
- Vectors

• ...

JSXGraph in STACK

a: rand(6)-3; fx: sin(x)+a;

Type in an algebraic expression which has the graph shown below.

[[jsxgraph]]

// boundingbox:[left, top, right, bottom]

var board = JXG.JSXGraph.initBoard(divid, {boundingbox: [-10, 5, 10, -5], axis: true, showCopyright: false});

var f = board.jc.snippet('{#fx#}', true, 'x', true);

board.create('functiongraph', [f,-10,10]);

[[/jsxgraph]]

\(f(x)=\) [[input:ans1]] [[validation:ans1]]

THE UNIVERSITY of EDINBURGH School of Mathematics

https://stack2.maths.ed.ac.uk/demo2018/question/type/stack/doc/doc.php/Authoring/JSXGraph.md

Possible pitfall: comments

Type in an algebraic expression which has the graph shown below. [[jsxgraph]]

// boundingbox:[left, top, right, bottom]

var board = JXG.JSXGraph.initBoard(divid, {boundingbox: [-10, 5, 10, -5], axis: true, showCopyright: false});

var f = board.jc.snippet('{#fx#}', true, 'x', true);

board.create('functiongraph', [f,-10,10]);

[[/jsxgraph]]

\(f(x)=\) [[input:ans1]] [[validation:ans1]]

- Sometimes caused import/export problems
- Instead: /* comment */

THE UNIVERSITY of EDINBURGH School of Mathematics

Fundamentals of Algebra and Calculus

THE UNIVERSITY of EDINBURGH School of Mathematics

Demo available at: https://eams.ncl.ac.uk/moodle/course/view.php?id=5

Randomisation

From one to many

The curve with equation $y = -x^2$ is shown in the diagram below.

- The line ℓ is a tangent to the curve at x = 2.
- (*a*) Find the gradient of line ℓ .
- (b) Given that the line through A and B is parallel to ℓ , find the coordinates of A.

THE UNIVERSITY of EDINBURGH

The curve with equation $y = -2 x^2 - 4 x - 4$ is shown in the diagram below.

The line ℓ is a tangent to the curve at x=1.

(a) Find the gradient of line ℓ .

(b) Given that the line through A and B is parallel to ℓ , find the coordinates of A. Enter your answer as a list, e.g. to enter (1, 2) type [1,2]

(b) Given that the line through A and B is parallel to ℓ , find the coordinates of A. Enter your answer as a list, e.g. to enter (1,2) type [1,2]

The curve with equation $y = -2 \, x^2 - 8 \, x - 6$ is shown in the diagram below

The line ℓ is a tangent to the curve at x=5(a) Find the gradient of line ℓ .

(b) Given that the line through A and B is parallel to ℓ , find the coordinates of A. Enter your answer as a list, e.g. to enter (1,2) type [1,2]

The line ℓ is a tangent to the curve at x=1 (a) Find the gradient of line $\ell.$

(b) Given that the line through A and B is parallel to ℓ , find the coordinates of A. Enter your answer as a list, e.g. to enter (1, 2) type [1,2]

Method: transformation

- Start with a known question and apply a transformation
 - Scaling (c_x and c_y)
 - Translating $(t_x \text{ and } t_y)$
- Transform to new coordinates:
 - a) points
 - b) expressions

THE UNIVERSITY of EDINBURGH

$$T(x,y) = \left(c_x(x+t_x), c_y(y+t_y)\right)$$

- a) T(2,-4) = (1,3)
- b) TF(y):=expand(ev(T(0,y)[2],x=x/cx-tx)); TF(-x^2) = x^2+2*x

Bounding boxes

bbTL:T(-5,15); bbBR:T(6,-35);

BBx:[bbTL[1],bbBR[1],-1.5,1.5]; BBy:[bbTL[2],bbBR[2],-1.5,1.5]; BB:[lmin(BBx),lmax(BBy),lmax(BBx),lmin(BBy)]; [left, top, right, bottom]

var board = JXG.JSXGraph.initBoard(divid, {boundingbox: {#BB#}});

THE UNIVERSITY of EDINBURGH School of Mathematics

Interactivity

Sliders

THE UNIVERSITY of EDINBURGH School of Mathematics

Sliders with a task

The function $f(x) = \arctan(x)$ has Maclaurin series $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$

This applet shows what those polynomials look like, with a slider so you can vary the value of N:

Here, you should see that as you increase the value of N, the Maclaurin polynomials do give a better approximation of f(x) for some x values but not for others.

Using the applet, which of the following values appear to be ones for which the Maclaurin series converges?

- □ (a) −0.5
- \Box (b) 0.5
- \square (c) -1.5
- □ (d) 1.5 □ (e) 0
- INBURG

Interactive with assessment

- Students drag the points to give their answer
- JavaScript code returns the answer to STACK as a list

THE UNIVERSITY of EDINBURGH

Based on code from Mikko Vasko (Hochschule Karlsruhe) at the 1st STACK conference

Code in HTML editor

```
var moveThingsAround = function() {
    var i:
```

```
for (i = 0; i < answer.length; i++) {
    answer[i].moveTo([ ans[2*i] , ans[2*i+1] ]);
```

```
Another hack to avoid < function isLessThan(a, b) {
```

```
return Object.is((a-b)%1, -0);
```

```
NUNIVE RO
```

};

};

```
for(i = 0; isLessThan(i,sv); i++) {
    val = val + Math.pow(-1, i)*Math.pow(t,2*i+1)/(2*i+1);
}
```

Option 1: Use the plain-text editor in Moodle.

Option 2: Use alternative JavaScript:

```
var moveThingsAround = function() {
    var i = 0;
    for (let pts of answer) {
        pts.moveTo([ ans[2*i] , ans[2*i+1] ]);
        i++;
    };
    for(let i of [1,2,3]) {
        board.create('point', [i, 0]);
    };
}
```

Further examples

Drag the points so that the diagram shows the graph of a function f:[0,1] o [0,1] with image $\left[0,rac{1}{2}
ight].$

Drag the points so that the diagram shows the graph of a function f:[0,1] o [0,1] with image $\left[0,rac{1}{2}
ight]$ and that is not one-to-one.

Drag the points so that the diagram shows the graph of a function f:[0,1] o [0,1] that is onto and not one-to-one.

Drag the points so that the diagram shows the graph of a function $f:[0,1] \rightarrow [0,1]$ that is injective, not surjective, and passes through (0.2, 0.8) and (0.5, 0.5).

Thank you!

Dr George Kinnear

G.Kinnear@ed.ac.uk

THE UNIVERSITY of EDINBURGH School of Mathematics

Example questions: https://eams.ncl.ac.uk/moodle/course/view.php?id=5 "Demo: JSXGraph"