

THE UNIVERSITY of EDINBURGH School of Mathematics

Using specifications grading in a fully online course

Richard Gratwick

R.Gratwick@ed.ac.uk Joint with George Kinnear and Anna Wood

About the course

Specifications grading

Outcomes

Fundamentals of Algebra and Calculus

Developed with George Kinnear, see: Kinnear, G. (2019) Delivering an online course using STACK http://doi.org/10.5281/zenodo.2565969

Year 1 Curriculum

Semester 1	Semester 2
Introduction to	Calculus and
Linear Algebra	its Applications
Fundamentals of Algebra	Proofs and
and Calculus	Problem Solving
Option	Option

Almost entirely online

A typical week

Fundamentals of Algebra and Calculus (2018-2019)[SV1-SEM1]

Dashboard ▶ My courses ▶ www.leam.ed_66007_1 ▶ Week 4: Principles of integration ▶ 2. Antiderivatives

Information	
Filag question	Antiderivatives and indefinite integrals

Remember that any function we can differentiate tells us about a corresponding antiderivative.

For example, $\frac{d}{d_{-}}(x^2) = 2x$ so we know x^2 is an antiderivative of 2x.

However, notice that we also have $\frac{d}{dx}(x^2+1)=2x$. So x^2+1 is also an antiderivative of 2x.

In fact, if F(x) is an antiderivative of f(x) then so is F(x) + C where C is any constant. We can see this because differentiating both F(x) and F(x) + C gives f(x). We saw in the last section that antiderivatives are related to definite integrals:

Evaluation Theorem

If f(x) = G'(x) (i.e. G is an antiderivative of f) then

 $\int^b f(x) \, dx = G(b) - G(a).$

Because of this connection, we also talk about indefinite integrals:

The indefinite integral $\int f(x) \, dx = F(x) + C$ means F'(x) = f(x).

It represents the most general antiderivative of f, so must always include an arbitrary constant (usually +C).

Note that:

• we say that f(x) is the integrand.

The dx is very important because it indicates the variable we are integrating with respect to.

• the function F is often just referred to as the integral of f.

The notation is very similar for definite and indefinite integrals -- the only difference is whether we attach limits to the integral sign. However, notice that the result of an indefinite integral is a *function*, whereas the definite integral gives a *number*.

Example

Returning to the example above, we can write the indefinite integral

 $\int 2x \, dx = x^2 + C$

to represent the fact that x^2+C is the most general antiderivative of 2x

Check

Marked out of 1.00

Simple questions to check understanding

Specifications grading

Theory

- Individual assessments are graded pass/fail
- Some amount of resubmission is allowed
- Letter grades are based on performance across multiple assessments

A typical week

Implementation in FAC

Each week

gets either a

Mastery

(80%+)

or

Distinction

(95%+)

THE UNIVERSITY of EDINBURGH School of Mathematics

What grade will you get?

Number of units Mastered (80%+)	Number of Distinctions (95%+)	Percentage awarded for the Unit Score	Equivalent Grade
Less than 7	-	0	F
7	-	45%	D
8	2 or 3	55%	С
9	4 or 5	65%	В
10	6 or 7	75%	A3
10	8 or 9	85%	A2
10	10	100%	A1

Outcomes

Results (2018/19)

(N=113)

- Mean: 67
- Median: 70
- Pass rate: 94%

THE UNIVERSITY of EDINBURGH School of Mathematics

Results (2019/20)

(N=181)

- Mean: 65
- Median: 69
- Pass rate: 88%

THE UNIVERSITY of EDINBURGH School of Mathematics

Number of units Mastered (80%+)	Number of Distinctions (95%+)	Percentage awarded for the Unit Score	Equivalent Grade
Less than 7	-	0	F
7	-	45%	D
8	2 or 3	55%	С
9	4 or 5	65%	В
10	6 or 7	75%	A3
10	8 or 9	85%	A2
10	10	100%	A1

Mitigation

Lots of support

Engagement and progress monitoring

Opportunity for resubmission

Student reaction

Mind-map of themes related to grading system

Gratwick, R., Kinnear, G., Wood, A. K., (2020) An online course promoting wider access to university mathematics. In Marks, R. (Ed), *Proceedings of the British Society for Research into Learning Mathematics*, 40 (1).

Fewer marks per input

Tidy STACK question tool | Question tests & deployed variants

Given that
$$\int_{-2}^{2} f(x) dx = 9$$
, $\int_{-2}^{3} f(x) dx = 10$, $\int_{-2}^{2} g(x) dx = 14$, and $\int_{2}^{3} g(x) dx = 4$, which of the following can be understand

evaluated?

(Enter the value if you can find it, otherwise enter none)

(a)
$$\int_{-2}^{3} f(x) - g(x) dx =$$

(b) $\int_{-2}^{-2} x^{2} f(x) dx =$
(c) $\int_{-2}^{2} 3f(x) + 5g(x) dx =$
(d) $\int_{2}^{3} f(x) dx =$
(e) $\int_{-2}^{2} x^{2} f(x) dx =$
Check

THE UNIVERSITY of EDINBURGH School of Mathematics

Partial credit

Fully factorise the polynomial $p(x)=3\,x^4+16\,x^3+3\,x^2-46\,x+24$, given that x=-3 is a root.

 $p(x) = (x^2+2x-3)(x+4)(3)$

Your last answer was interpreted as follows:

 $(x^2+2x-3)(x+4)(3x-2)$

The variables found in your answer were: [x]

Check

• Your answer is partially correct. Your answer is not factored. You could still do some more work on the term $x^2 + 2x - 3$. The factor 3x - 2 is correct. The factor x + 4 is correct. Marks for this submission: 0.50/1.00.

Errors carried forward

Tidy STACK question tool | Question tests & deployed variants

Consider the function $f(t) = 3t^2 - 6t + 8$.

Let A(x) be the value of the area under the graph of y = f(t), between t = x and t = x + 1.

Give expressions for A(x) and A'(x). Your answers should be polynomials in terms of the variable x. Remember from unit 4 how to calculate the area under a graph between two points on the axis!

 x^2

 $A(x) = x^{2}$

Your last answer was interpreted as follows:

The variables found in your answer were: [x]

 $A'(x) = 2^* x$

Your last answer was interpreted as follows:

2x

The variables found in your answer were: [x]

O Your answer is partially correct. Your expression for the area is incorrect.

THE UNIVERSITY of EDINBURGH School of Mathematics

Conclusions

Encourages high standards

Can lead to frustration

Careful question-writing required

Promotes mastery of the subject

Thank you!

