E-assessment at masters level: a case study from the Open University's MSc in Mathematics using STACK Ben Mestel

School of Mathematics & Statistics The Open University, UK

Joint work with Grahame Erskine & Tim Lowe

EAMS 2021 2 July 2021

The Open University (OU)

Berrill Building, Walton Hall Campus, Milton Keynes

- Britain's distance learning university since 1969
- Based in Milton Keynes but with offices around the UK in England, Northern Ireland, Scotland and Wales
- 168,000 students, most studying part-time
- Levels from opening to BSc to Masters and PhD
- Modus Operandi: high quality course notes, supplemented by tutor-marked assignments, correspondence tuition and face-to-face/online tutorials

e-Assessment at the OU

The photograph shows a selection of igneous rocks. How are igneous rocks formed?

Check

Early e-assessment at the OU pioneered by Phil Butcher

- 0
- The OU was a pioneer in computer-marked objective testing (i.e. multiple choice)
- Developed its own bespoke e-assessment system – OpenMark (excellent system but required professional programming in many instances)
- Since 2008 significant investment in the STACK system although and other systems used as well

STACK AT THE OU

- Integrated as part of the Moodle Quiz Engine in the Virtual Learning Environment
- 1.3 million STACK questions annually

Chris Sangwin

Tim Lowe and Tim Hunt

Mathematics Master of Science

Alan Turing Building at Open University Campus in Milton Keynes, Spring 2013 Photo by: <u>Chmee2</u>

- Mathematics MSc offered since 1980s
- About 500 students
- 2 6 years to complete 6 30credit modules
- Modules cover a range of subjects in pure and applied mathematics but not statistics
- STACK used for two modules:
 - M820 Calculus of Variations and Advanced Calculus
 - M823 Analytic Number Theory I
- Modules mainly assessed by final exam

M820 Calculus of Variations & Advanced Calculus

- Introductory module of the MSc programme
- About 130 students annually
- 8 multi-question STACK quizzes were developed to assist with learning and preparation for the module exam (currently taken remotely)
- 30 STACK questions in total
- STACK questions developed first in 2017 and extended in 2020

8 multi-question STACK quizzes

- Solution of the Euler-Lagrange differential equation for quadratic functionals to obtain the stationary path.
- Solution of variational problems through the first-integral, for those functionals permitting such an approach.
- Local classification of stationary paths of functionals into minima, maxima and saddle points, through the analysis of the Jacobi differential equation.
- Calculation of the Noether invariants (first-integrals) for functionals invariant under a scale change in the variables.
- Diagonalisation of quadratic functionals involving two dependent variables, therefore allowing the stationary paths to be calculated by the solution of two independent variational problems.
- Constrained variational problems with integral constraints.
- Non-fixed endpoint conditions using the transversality condition.
- The use of the Rayleigh-Ritz method to find an upper bound for the least eigenvalue of a Sturm-Liouville problem.

Crash course in Calculus of Variations

- Applications in physics, biology, control engineering, economics and chemistry and more...
- Extremal paths of functionals of the form

$$\int_a^b dx \, F(x, y, y')$$

- (and generalisations) together with boundary conditions and constraints.
 - Stationary paths solve Euler-Lagrange equation

$$\frac{d}{dx}\left(\frac{\partial F}{\partial y'}\right) - \frac{\partial F}{\partial y} = 0$$

 Second order differential equation – boundary value problem

Classification via Jacobi equation

- Classification of stationary paths into local maxima, local minima and saddles – generally a hard problem ⁽²⁾
- One approach solve the Jacobi differential equation initial value problem

•
$$\frac{d}{dx}\left(P\frac{du}{dx}\right) - Q \ u = 0, \ u(a) = 0, \ u'(a) = 1$$
, where

- $P = \frac{\partial^2 F}{\partial y'^2}$, and $Q = \frac{\partial^2 F}{\partial y^2} \frac{d}{dx} \left(\frac{\partial^2 F}{\partial y \partial y'} \right)$, evaluated on the stationary path y(x).
- If u(x) has no zeros ("conjugate points" in the jargon) in the half-open interval (a, b] then y(x) is a local minimum if P > 0 on [a, b]; a local maximum if P < 0 on [a, b]; and a saddle if P changes sign on [a, b]. Further analysis is needed in other cases.

Devising a question

0

Restrict to quadratic functionals of the form

$$\int_{a}^{b} dx \left(\alpha_{0} x^{m} {y'}^{2} + \beta_{0} x^{m-2} y^{2} \right),$$

on [*a*, *b*], with boundary conditions y(a) = A, y(b) = B, where *A*, *B* are constants, chosen to reduce the algebra

- The constants *a*, *b* and *α*₀, *β*₀ and *m* specialised as below.
- For this example the Euler-Lagrange equation and the Jacobi equation are the same equation (but different problems !)

Solving Jacobi

Jacobi equation is Euler equation

$$A_{2}x^{2}\frac{d^{2}u}{dx^{2}} + A_{1}x\frac{du}{dx} + A_{0}u = 0,$$

$$u(a) = 0, \qquad u'(a) = 1,$$

• where $A_2 = \alpha_0$, $A_1 = m\alpha_0$, and $A_0 = -\beta_0$. The usual transformation $x = e^t$ leads to

$$A_2 \frac{d^2 u}{dt^2} + (A_1 - A_2) \frac{du}{dt} + A_0 u = 0,$$

$$u(\log a) = 0, \qquad u'(\log a) = 1.$$

• Choose auxiliary $\lambda^2 - 2\rho\lambda + \rho^2 + \omega^2 = 0$, where ρ and ω are 'nice' constants with $\omega \ge 0$ and ρ, ω not both zero.

•
$$u(x) = \left(\frac{a}{\omega}\right) \left(\frac{x}{a}\right)^{\rho} \sin(\omega \log(x/a))$$
 for $\omega > 0$ and
 $u(x) = a \left(\frac{x}{a}\right)^{\rho} \log(x/a)$ for $\omega = 0$.

Restricting and randomizing

- To reduce complexity, restrict to a = 1 and $\omega > 0$, so $u(x) = \frac{1}{\omega} x^{\rho} \sin(\omega \log x)$
- Zeros of u(x) in (1, b] if and only if $\omega \log b \ge \pi$
- Vary choice of ω and b to flip between the two cases
 - -no zeros & Jacobi test applies
 - -at lest one zero & Jacobi test fails.
 - -In the first case,
 - minimum if $P(x) = 2\alpha_0 > 0$
 - maximum if $P(x) = 2\alpha_0 < 0$.
- (*P* is of fixed sign (for $\alpha_0 \neq 0$) so the stationary path is either a local maximum or a local minimum.)

Euler-Lagrange equation

• Euler-Lagrange boundary value problem: $d^2y \qquad dy$

$$A_{2}x^{2}\frac{a^{2}y}{dx^{2}} + A_{1}x\frac{ay}{dx} + A_{0}y = 0,$$

y(a) = A, y(b) = B

- For simplicity choose A = 0 and B = kb^ρ sin ω log b, where k is a small random positive integer
- Stationary path $y(x) = k x^{\rho} \sin(\omega \log x)$

STACK Jacobi Quiz

M	820-17J Home	Assessment	Tutorial	s Forums	Resources	News	Help ?	Search M820-17	J Q	
M8:	20-17J Home > Resource	s > Online practice quizzes	- to help with lear	ning and revision > Q5. Usin	g Jacobi's equation					
	Questions	4 5)	Question Marked out of 1 This question first part you Consider the S[y] = with boundar Find the Eule involving x, y (To input $y' y$ indicate mult G(x, y, y', y) Check	1 Tries remaining: 1.00 \mathbb{V} Flag question a provides practice in the are asked to calculate the functional $\int_{1}^{7} dx \left(\frac{4y^{2}}{x^{3}} - \frac{2y'^{2}}{x}\right)$ by conditions $y(1) = 0, y$ or conditions $y(1) = 0, y$ or conditions $y(1) = 0, y$ for Lagrange equation for y , y' and y'' . Simplify yo you should type yp in the plication and powers: for y'') =	3 classification of station e Euler-Lagrange equiv- $\binom{2}{-}$ $y(7) = 7 \sin (\ln (7))$ S[y] in the form $G(x, y)in the form G(x, y)in the form G(x, y)in the form G(x, y)is enterinput box and to inputexample xy'^2 is enter$	hary paths using ation of the function of the	Jacobi's equation. onal. where <i>G</i> is an exp ype ypp . Use * ar	In this pression nd ^ to		

Question in practice: feedback

Your answer is correct.

The Jacobi equation is, in this case, the same as the Euler-Lagrange equation. So the general solution of the Jacobi equation in terms of $t = \ln x$ is

$$u(t) = lpha e^t \sin{(t)} + eta e^t \sin{(t-\ln{(7)})}$$

In terms of x, this becomes

$$u(x) = \alpha x \sin(\ln(x)) + \beta \sin\left(\ln\left(\frac{x}{7}\right)\right) x.$$

The initial condition u(1) = 0 gives $\beta = 0$.

So $u(x) = \alpha x \sin(\ln(x))$ and $u'(x) = \alpha(\sin(\ln(x)) + \cos(\ln(x)))$.

The condition u'(1) = 1 then gives $\alpha = 1$. So the solution of the Jacobi equation is

 $u(x) = x \sin\left(\ln\left(x\right)\right).$

From the theory, in order to be able to use the Jacobi equation method to determine the nature of the stationary path, we require that there should be no point \tilde{a} conjugate to a = 1 in the interval $1 < \tilde{a} \le 7$. In other words, there should be no point \tilde{a} in this interval for which $u(\tilde{a}) = 0$. If this holds, then the stationary path is a weak local minimum if P(x) > 0 everywhere on the interval $1 \le x \le 7$, and a weak local maximum if P(x) < 0 on the interval. In our case $P(x) = -\frac{4}{x}$ and so P < 0 on the interval.

Now u(x) = 0 if and only if $\ln(x) = \pi k$, or $x = e^{\pi k}$, for some integer k. Thus the smallest zero of u with $\tilde{a} > 1$ occurs at $\tilde{a} = e^{\pi}$.

Since the smallest value of $\tilde{a} > 1$ for which $u(\tilde{a}) = 0$ is at $\tilde{a} = e^{\pi} = 23.140 \dots > 7$, there is no point \tilde{a} conjugate to 1 in the interval $1 < \tilde{a} \le 7$.

Since P < 0, it follows that the stationary path is a weak local maximum.

How did it STACK up?

- Well received by students
- "Started using these for exam revision. Great questions and the answers are very well written. Would love to see more types of questions."
- "Practice quizzes were fabulous for revision"
- "In particular the practice quizzes and screencasts were by far the most helpful!"

Modern Book Printing, Walk of Ideas, Berlin, 2006. Photo: Matthew6476 <u>CCSAL</u>

Statistical analysis of first-year

T (Aggregate TMA mark)

From (Mestel & Lowe, 2019)

Blue: interacted with quizzes E = 15.20 + 0.67TRed: did not interact with quizzes E = -24.99 + 1.22T

Exam mark vs continuous assessment mark

Some (STACK) authoring tips

- Mostly common sense, but hopefully useful
- Not hard and fast rules, rather suggestions
- Based on our experience of authoring e-assessment questions in STACK and other systems
- Feel free to disagree !

Bust of Socrates. Photo: Bregi

Some question authoring tips Design and implementation: iterative process, useful to

0

- Start from the solution and derive the question
- Check the answers don't pattern match

have more than one person involved

- Handle each case separately don't try to do everything in one go
- Helpful to solve the problem in CAS (Maxima) first, before implementation.
- Randomise in Maxima and then select a good set of parameter values
- Use multi-question quizzes not questions with many parts
- Hard work to coax Maxima to display formulae nicely
- Feedback is often the most time-consuming part and it is frequently omitted

Thank you !

- Grahame Erskine and Ben Mestel, Developing STACK practice questions for the Mathematics Masters Programme at the OU, MSOR Connections, 17 (1) (2018), <u>http://dx.doi.org/10.21100/msor.v17i1.896</u>
- Ben Mestel and Tim Lowe, Using STACK to support student learning at masters level: a case study, Teaching Mathematics and its Applications, 03 (2019), <u>https://dx.doi.org/10.1093/teamat/hrz001</u>