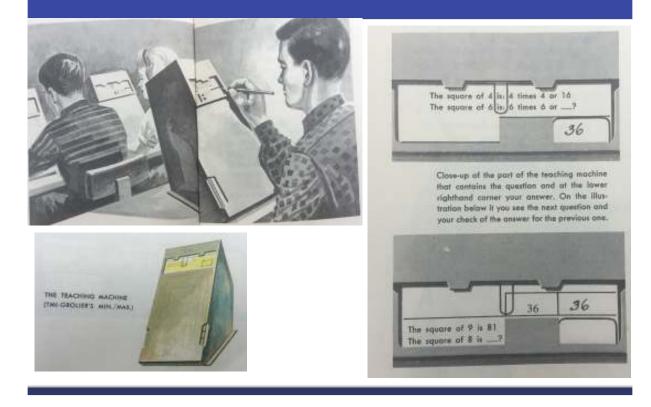


STACK-aided active learning environment for advanced engineering mathematics : pre- and post-Covid


Igor Chernyavsky, William Lionheart & Colin Steele Department of Mathematics, University of Manchester

> E-Assessment in Mathematical Sciences 21st June to 2nd July 2021

Setting the Scene

Where was mathematical e-assessment in Manchester prior to this project ?

A view from the sixties

University of Manchester

1990s : Some use of "complete packages" brought in from elsewhere e.g. Topclass, CALM etc.

2000s : Question Mark for Windows, WebCT

Coursework Tests

Mainly for students taking maths course-units as part of other degree courses.

STACK at Manchester

- 2008-09 : First use with students
- Several Upgrades
- 2019-20 : Connection through Blackboard

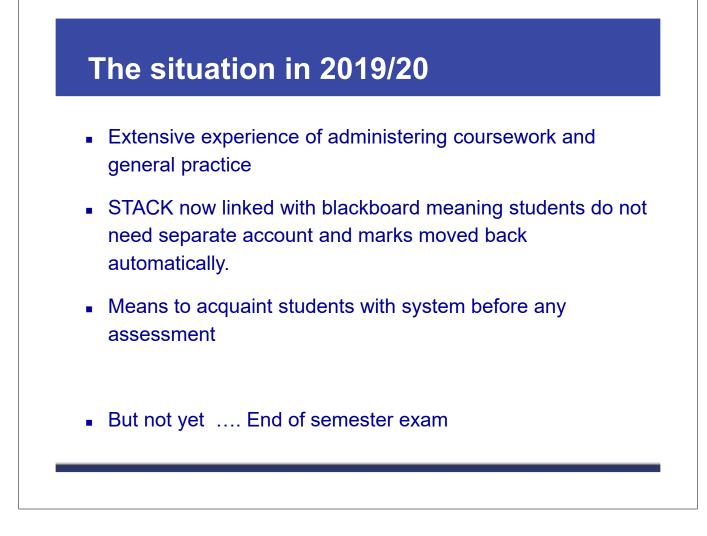
Types of STACK use in Manchester

- Coursework rather than exams
- Also used for general practice
- Great majority UNsupervised

Practice and Assessment Modes

- For a particular assignment
- Practice Quiz : Can be done as many times as desired with same question stems. Full feedback provided.
- Assessment Quiz : Same question stems (in most cases) as in practice quiz. Just a single attempt. Feedback sometimes withheld.
- Mark for assignment weighted mean of BEST PRACTICE and SINGLE ASSESSMENT marks.

Other Modes


- A course with 10 weekly assignments contributing to coursework, each with unlimited attempts before deadline
- Reaching a 'threshold' on each assignment gives "credit".
 Credit assembles on a nonlinear scale to give total credit.

Diagnostic Followup

- Diagnostic Exercise completed by entrant students in September
- Based on above, students given individual programme of work involving two sections from A to P.
- Reading and other resources for each section
- Practice and Assessment quizzes for each section allocated to student.

The situation in 2019/20

- Extensive experience of administering coursework and general practice
- STACK now linked with blackboard meaning students do not need separate account and marks moved back automatically.
- Means to acquaint students with system before any assessment

The University of Manchester

STACK-aided Active Learning Environment for Advanced Engineering Mathematics: pre- and post-COVID Experience

Igor Chernyavsky, William Lionheart & Colin Steele Department of Mathematics, University of Manchester, UK

E-Assessment in Mathematical Sciences 21st June 2021

Acknowledgements

Support

Maths T&L Office

UoM e-Learning Team

Infrastructure

Chris Sangwin and STACK Users Group (Edinburgh)

stack-assessment.org

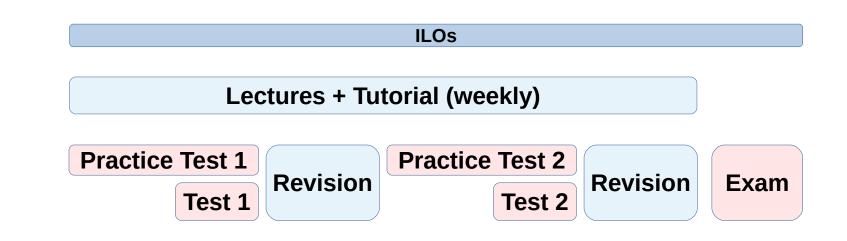
Outline

- Course Structure and Delivery
- STACK-aided Exam Format
- Technical and Pedagogic Challenges
- Learning Outcomes and Outlook

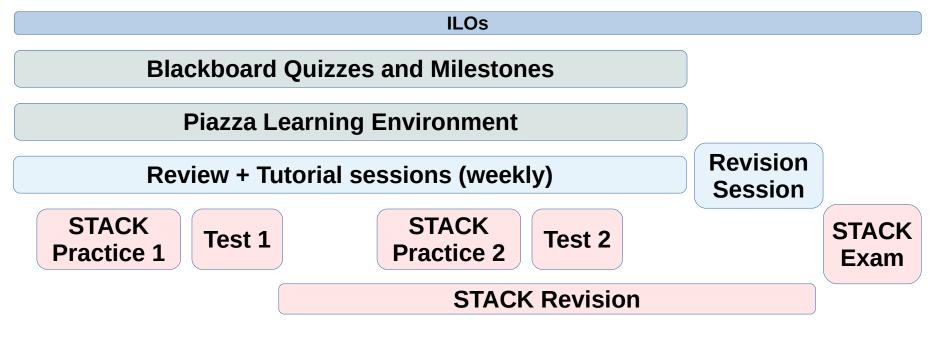
Advanced Engineering Mathematics

- Year 2 course unit of three parts (Integral Transforms, Vector Calculus & Linear Algebra)
- Two unit leaders
- 250+ students from Electrical and Electronic Engineering
- Highly diverse background and level of training (including direct-entry overseas students)

T&L Environment


www.conference.manchester.ac.uk

Advanced Engineering Mathematics MATH29681


2019/20 Structure

Advanced Engineering Mathematics MATH29681

STACK-based Exam Format

STACK + Moodle

- Robust randomisation
- Carry-through calculation errors and consistent marking
- Instant (or deferred) and detailed feedback

STACK + Moodle

- Robust randomisation
- Carry-through calculation errors and consistent marking
- Instant (or deferred) and detailed feedback
- Could be mixed with semi-automatic marking:
 - short textual justification
 - uploading a graph sketch

(c) By solving a differential equation of the form $\dot{y} = Dy$, where D is diagonal, find the solution of the differential equation $\dot{x} = Ax$, with $x(0) = \begin{bmatrix} 5\\ -3 \end{bmatrix}$.		* The acceptable file formats are: PDF, PNG and JPEG. Please use a camera flash when making the scan and crop the picture, making sure the image has the correct orientation and the file size is less than 2 MB. Unreadable scans with poor contrast will not be marked. Maximum size for new files: 5MB, maximum attachments: 1
$x(t) = \begin{bmatrix} ? \\ \hline ? \\ \hline ? \end{bmatrix} \text{(express your answer in terms of variable } t\text{)}$		⊡ III III III ► Files
Describe in words what happens as $t ightarrow\infty$ [50 words maximum]:		
REQUIRED*		You can drag and drop files here to add them.
	[6 marks]	

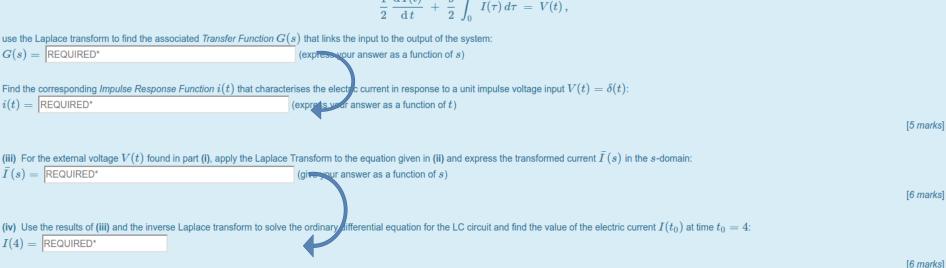
Draw a sketch of the causal function f(t) from Question 2 (see above), labelling the axes appropriately. Please

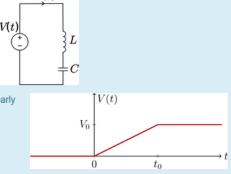
[3 marks]

scan your plot and upload it below.*

STACK: Adaptive Multi-part Questions

An electrical LC circuit (see the diagram) consists of a serially connected capacitor with capacitance $C = \frac{2}{6}$ and an inductor with inductance L =(both given in normalised dimensionless units).


At time t = 0 there is no charge at the capacitor and no electric current in the circuit. An external voltage V(t) (in dimensionless units) is applied to the circuit, increasing linearly from V(t=0) = 0 to $V(t=t_0) = V_0$, and is then kept constant after that time ($V = V_0$ for $t > t_0$; see the plot).


Here $t_0 = 4$ and $V_0 = 108$ (in dimensionless units).

(i) Express the externally applied voltage V(t) as a function of time for t > 0. Use u(t) to denote the unit step function in your answer: $V(t) = |\mathsf{REQUIRED}^*|$ (express your answer as a function of t)

(ii) Assuming the electric current I(t) in the circuit described above obeys the equation

$$rac{1}{2}\,rac{{
m d}\,I(t)}{{
m d}\,t}\,+\,rac{9}{2}\,\int_{0}^{\,t}I(au)\,d au\,=\,V(t)\,,$$

I(t)

[3 marks]

Technical Challenges

Technical Challenges

- Inverse Laplace Transform for piecewise-continuous functions. Usage example (in Question Variables):
 - f: laplaceInv(e^(-s)*s/(s^2+1), s, t);
 - /* returns: cos(t-1)*u(t-1) */

Adapted from Eric Barth's (https://themaximalist.org/tag/inverselaplace-transform). The code is available on EAMS Moodle.

Technical Challenges

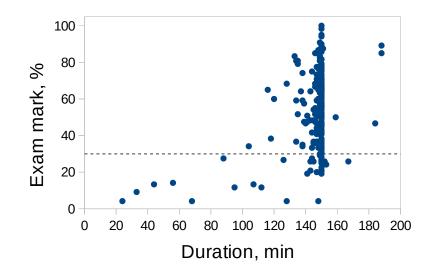
- Inverse Laplace Transform for piecewise-continuous functions. Usage example (in Question Variables):
 - f: laplaceInv(e^(-s)*s/(s^2+1), s, t);
 - /* returns: cos(t-1)*u(t-1) */

Adapted from Eric Barth's (https://themaximalist.org/tag/inverselaplace-transform). The code is available on EAMS Moodle.

 Symbolic logarithm (extracts symbolic exponent a from an expression = A* e^a):
 symlog(expr):= sort(args(inpart(expr, 2)))[1];

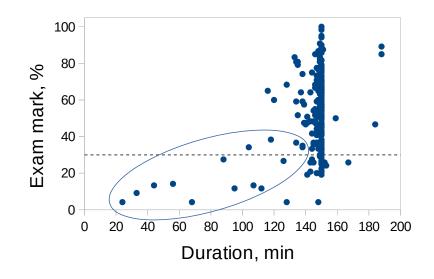
Digital Literacy

- Student's understanding of "computer-based" marking.
- Anticipating unusual syntax (e.g. u*(t) instead of u(t)).
 - Coding-style accuracy as a possible ILO.
- Empty / invalid answers in linked multi-part questions.


Digital Literacy

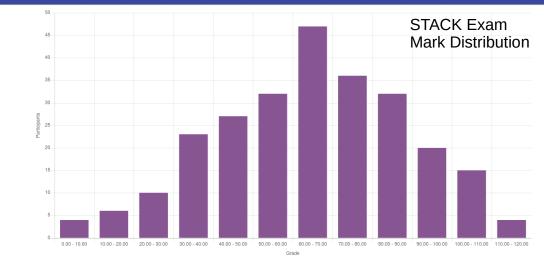
- Student's understanding of "computer-based" marking.
- Anticipating unusual syntax (e.g. u*(t) instead of u(t)).
 - Coding-style accuracy as a possible ILO.
- Empty / invalid answers in linked multi-part questions.

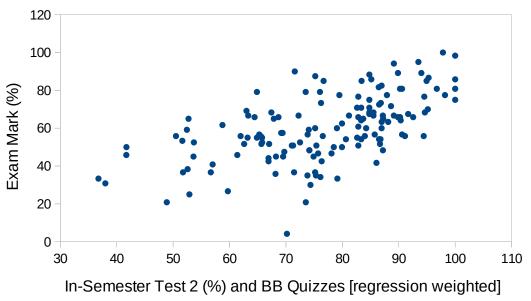
Student's feedback: "... to master the skills of accurate output of our mathematical knowledge ..."


Invigilation & Support

- "Wolfram Alpha"-like engines.
- Time management: How to approximate the traditional experience?

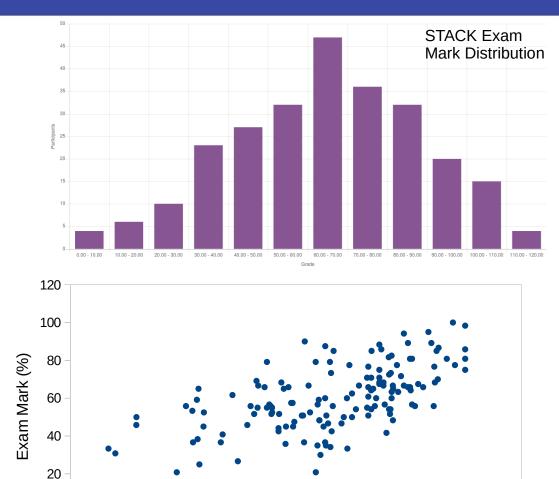
Invigilation & Support


- "Wolfram Alpha"-like engines.
- Time management: How to approximate the traditional experience?



Learning Outcomes

Quantification of Active Learning


- Robust semi-automatic marking
- Quantitative analysis of learning outcomes

Quantification of Active Learning

- Robust semi-automatic marking
- Quantitative analysis of learning outcomes
 - 2019/20: early engagement correlates with high outcomes
 - 2020/21: sustained engagement correlates with high outcomes

In-Semester Test 2 (%) and BB Quizzes [regression weighted]

70

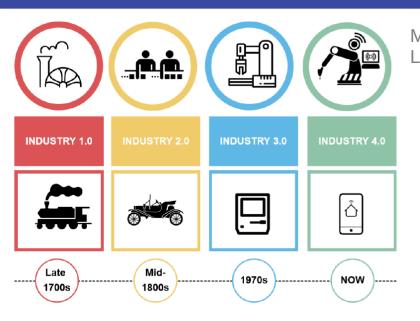
80

90

100

110

50


40

60

Summary & Outlook

- STACK provides a robust environment for teaching and assessing advanced engineering mathematics.
- Digital literacy poses a barrier for some students.
- Active learning-aided outcomes can be quantified.
- The extra effort pays off for large classes.

Thank you for listening!

Morisson A & Pattinson M (2019) *Industry 4.0*. Lille: Interreg Europe Policy Learning Platform.

Education 1.0	Education 2.0	Education 3.0	Education 4.0
Postal Correspondence			ູ່ໃ
Courses (late 19 th cent.)	Open University (1960 ^s)	MOOCs (2010 ^s)	Post-COVID (2020 ^s)

Graphics adapted from www.flaticon.com.