STACK developer update, EAMS 2021

Chris Sangwin

School of Mathematics University of Edinburgh

June 2021

Chris Sangwin (University of Edinburgh)

4 Th

Unprecedented interest in teaching online....

Chris Sangwin (University of Edinburgh)

EAMS 202

< ≣ ▶ ≣ •) ৭ ৫ June 2021 2/22

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

2020-21

Unprecedented interest in teaching online.... Focus in summer 2020

- STACK user workshops
- Assessment of Proof (with R. Bickerton)

-

Unprecedented interest in teaching online.... Focus in summer 2020

- STACK user workshops
- Assessment of Proof (with R. Bickerton)

(Not a lot of new features in summer of 2020!)

STACK 4.3.8: December 2020

- Introduce "context variables"
- Make test case construction easier.
- Internal reorganisation of answer tests.
- Add in house styles
 - Proof
 - HELM

Version 4.3.9: summer 2021

- Student's input now allows coordinates (*x*, *y*).
- Add in warnings of language mismatch.
- Add in warnings where the answer test needs a raw input.
- Expand rand to now accept sets.

• Solving problems at the mathematical level is a key goal.

- Solving problems at the mathematical level is a key goal.
- Make subtle distinctions.

e.g. accept answer of 0 - i but reject 1/i.

- Solving problems at the mathematical level is a key goal.
- Make subtle distinctions.
 - e.g. accept answer of 0 i but reject 1/i.

Select and use some algebraic rules but not others.

- Solving problems at the mathematical level is a key goal.
- Make subtle distinctions.
 e.g. accept answer of 0 *i* but reject 1/*i*.

Select and use some algebraic rules but not others.

Making subtle distinctions is necessary for helpful feedback.

- Solving problems at the mathematical level is a key goal.
- Make subtle distinctions.
 e.g. accept answer of 0 *i* but reject 1/*i*.
 Select and use some algebraic rules but not others.
- Making subtle distinctions is necessary for helpful feedback.

I will assume familiarity with writing STACK questions. Apologies to new STACK users.

- Solving problems at the mathematical level is a key goal.
- Make subtle distinctions.
 e.g. accept answer of 0 *i* but reject 1/*i*.
 Select and use some algebraic rules but not others.
- Making subtle distinctions is necessary for helpful feedback.

I will assume familiarity with writing STACK questions. Apologies to new STACK users. (New users: sorry if the answer test is technical! Algebraic equivalence is fine 90% of the time...)

The teacher poses a question.

Chris Sangwin (University of Edinburgh)

э June 2021 6/22

< 4 →

- The teacher poses a question.
- 2 The student answers.

< 3

A .

- The teacher poses a question.
- 2 The student answers.
- Stablish properties.

ъ

- The teacher poses a question.
- 2 The student answers.
- Stablish properties.
- Generate *outcomes*, e.g. mark/feedback/stats.

The form of the answer.

Chris Sangwin (University of Edinburgh)

EAMS 202

The *form* of the answer. Factor command returns $(x - 2)^2$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The *form* of the answer. Factor command returns $(x - 2)^2$.

$$(x-2)(x-2), (x-2)^2, (2-x)^2, 4\left(1-\frac{x}{2}\right)^2.$$

< 3

~

The *form* of the answer. Factor command returns $(x - 2)^2$.

$$(x-2)(x-2), (x-2)^2, (2-x)^2, 4\left(1-\frac{x}{2}\right)^2.$$

Recognising a "factored" expression:

- A product
- I of powers

of distinct

irreducible terms.

("Irreducible?")

-

- 3 →

~

Characterized by a *family* of answers which pass.

Exactly the same. (String match)

Characterized by a *family* of answers which pass.

- Exactly the same. (String match)
- 2 Algebraic equivalence.

Characterized by a *family* of answers which pass.

- Exactly the same. (String match)
- 2 Algebraic equivalence.
- Substitution equivalence.

$$a^2 + b^2 = c^2 \equiv x^2 + y^2 = z^2$$

Characterized by a *family* of answers which pass.

- Exactly the same. (String match)
- 2 Algebraic equivalence.
- Substitution equivalence.

$$a^2 + b^2 = c^2 \equiv x^2 + y^2 = z^2$$

Same type.

A surprisingly useful meaning of "same"

We want

2x + 1 = 1 + 2x

BUT

 $x + x + 1 \neq 1 + 2x.$

イロト イポト イヨト イヨト

A surprisingly useful meaning of "same"

We want

$$2x + 1 = 1 + 2x$$

BUT

$$x + x + 1 \neq 1 + 2x.$$

Equivalence up to associativity and commutativity of + and \times .

4 E

< (□) < 三 > (□)

Calculate the following power and write your answer in the Cartesian form: $\left(-\frac{i-1}{\sqrt{2}}\right)^{-14}$.

- ∢ ∃ ▶

Calculate the following power and write your answer in the Cartesian form: $\left(-\frac{i-1}{\sqrt{2}}\right)^{-14}$.

The power is randomly generated. The correct answer is -i.

Students' responses

tear 1, Proofs and Problem Solving Course.	
Frequency	Response
50 (72.46%)	-i
4 (5.80%)	0-i
3 (4.35%)	0-1*i
2 (2.90%)	1/i
1 (1.45%)	cos(5/2*pi)-sin(5/2*pi)*i
1 (1.45%)	0+1*i
1 (1.45%)	i
1 (1.45%)	cos(-5/2*pi)+i*sin(-5/2*pi)
1 (1.45%)	-1/32
1 (1.45%)	1
1 (1.45%)	-1*i

Year 1, "Proofs and Problem Solving" course.

イロト イヨト イヨト イヨト

Inconsistency

- "Cartesian form" is x + i y.
- Do not write 0+? and $1\times$?.

Inconsistency

- "Cartesian form" is x + i y.
- Do not write 0+? and $1\times$?.

About 10% of the cohort typed in something like 0-1*i .

Inconsistency

- "Cartesian form" is x + i y.
- Do not write 0+? and $1\times$?.

About 10% of the cohort typed in something like 0-1*i .

What do you want to accept?

Inconsistency

- "Cartesian form" is x + i y.
- Do not write 0+? and $1\times$?.

About 10% of the cohort typed in something like 0-1*i .

What do you want to accept? But, don't accept anything equivalent, e.g. 1/i.

Problem 2

Simplify
$$\frac{4x^2-4y^2}{-6y-6x}$$
.
The correct answer is $-\frac{2}{3}(x-y)$.

Chris Sangwin (University of Edinburgh)

June 2021 13/22

◆□> ◆圖> ◆理> ◆理> 三連

Problem 2

Simplify
$$\frac{4x^2-4y^2}{-6y-6x}$$
.

The correct answer is $-\frac{2}{3}(x - y)$. Up to commutativity and associativity we have -(2/3)(x - y), (-2/3)(x - y), (-2(x - y))/3, -(2(x - y))/3, -(2(x - y))/3, -(2(x - y))/3, -(2(x - y))/3).

イロト イ団ト イヨト イヨト

Two problematic groups

The second class includes (2/-3)(x-y), (2(x-y))/(-3), and 2(x-y)/(-3).

Two problematic groups

The second class includes (2/-3)(x-y), (2(x-y))/(-3), and 2(x-y)/(-3).

The third class includes (2(y - x))/3, (2/3)(y - x), and 2(y - x)/3.

Solution

New answer test: AlgEquivNouns

Chris Sangwin (University of Edinburgh)

Solution

New answer test: AlgEquivNouns

Problems with this approach

- We can't keep introducing new answer tests!
- Need much more flexible control. Question by question.

Establish whether or not two parse trees belong to the same equivalence class.

4 A N

Establish whether or not two parse trees belong to the same equivalence class.

Solution: teachers define their own classes.

Chris Sangwin (University of Edinburgh)

EAMS 2021

Rule-based answer test

Teacher chooses relevant rules.

Rule-based answer test

- Teacher chooses relevant rules.
- System repeatedly applies those rules across the tree until the expression stops changing.

Rule-based answer test

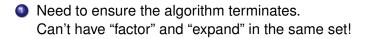
- Teacher chooses relevant rules.
- System repeatedly applies those rules across the tree until the expression stops changing.
- The equivalence class is based on the final form.

Choose rules

Name	Rule
(ALG-TRANS)	
assAdd	Associativity of addition
assMul	Associativity of multiplication
comAdd	Commutativity of addition
comMul	Commutativity of multiplication
(ID-TRANS)	
zeroAdd	$0 + x \rightarrow x$
zeroMul	$0 \times x \rightarrow 0$
oneMul	$1 \times x \rightarrow x$
oneDiv	$\frac{x}{1} \rightarrow X$
onePow	$1^{x} \rightarrow 1$
idPow	$x^1 \rightarrow x$
zeroPow	$0^x \rightarrow 0$ if $x \neq 0$
zPow	$x^0 ightarrow$ 1 if $x eq 0$

イロト イヨト イヨト イヨト

Name	Rule
(NEG-TRANS)	
negNeg	-(-x) ightarrow x
negDiv	y/(-x) ightarrow -y/x
(DIV-TRANS)	
recipMul	$x/a \times y/b \rightarrow (x y)/(a b)$
divDiv	a/(b/c) ightarrow ac/b
(INT-ARITH)	
intAdd	Perform addition on integers
intMul	Perform multiplication on integers
intPow	Perform integer exponentiation


▲口▶ ▲圖▶ ▲理▶ ▲理≯

Results

Test	Frequency	Response
CASEqual	50 (72.46%)	-i
ID-TRANS	4 (5.80%)	0-i
	3 (4.35%)	0-1*i
	1(1.45%)	-1*i
AlgEquiv	2 (2.90%)	1/i
	1 (1.45%)	cos(5/2*pi)-sin(5/2*pi)*i
	1(1.45%)	cos(-5/2*pi)+i*sin(-5/2*pi)
(!Wrong!)	1 (1.45%)	0+1*i
	1 (1.45%)	i
	1(1.45%)	-1/32
	1(1.45%)	1

◆□> ◆圖> ◆理> ◆理> 三連

Notes

- Need to ensure the algorithm terminates. Can't have "factor" and "expand" in the same set!
- Pules don't have to be correct mathematics.

• Close to a release. Will be ready for 2021-22.

Chris Sangwin (University of Edinburgh)

< ≣ ► ≣ ৩৭৫ June 2021 22/22

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Conclusion

- Close to a release. Will be ready for 2021-22.
- Answer test: I did not know what I wanted when I started!

A .

Conclusion

- Close to a release. Will be ready for 2021-22.
- Answer test: I did not know what I wanted when I started!
- I don't expect to know all use-cases.

Conclusion

- Close to a release. Will be ready for 2021-22.
- Answer test: I did not know what I wanted when I started!
- I don't expect to know all use-cases.

(New users: sorry if the answer test is technical! Algebraic equivalence is fine 90% of the time...)

