Using Python Jupyter Notebooks + nbgrader as a Homework System

EAMS 2022

Debbie Yuster, Ph.D. - dyuster@ramapo.edu Assistant Professor of Data Science and Mathematics Ramapo College of New Jersey (USA)

Introduction

- Applied Linear Algebra course for Masters of Science in Data Science students
- Homework assigned entirely within Jupyter notebooks (Python kernel)
- Mix of written, computational, and coding problems

Creating an assignment

must hold.

	View Insert Cell Kernel	Widgets Help	Trusted Python 3 (ipykernel)			
₽ + %	Toggle Header Toggle Toolbar	Code Validate				
	Toggle Line Numbers Shift-L					
	Cell Toolbar	None				
	Denio Assignment	Edit Metadata				
	EAMS 2022	Raw Cell Format Slideshow				
	Using Python Jupyter No	Attachments Tags er as a Homework	System			
	Debbie Yuster, Ramapo (Create Assignment Sey (USA)				
In []	▶ import numpy as np					
	Answer the questions below using Markdown or code cells as appropriate. Use LT_EX syntax for all mathematical expressions in your narrative (see this blog post for more information and tips). You'll find the <u>VMLS Python Companion</u> to be very helpful for the coding portions. For coding exercises, vectors should be represented as numpy arrays, and matrices should be represented as 2-D numpy arrays.					

bit.ly/yuster-eams-22

	₽	ID: cell-4c5be924e56fb862 Read-only
E	Example 3: Multiple choice exercise	
۱ د	When the Gram-Schmidt algorithm is run on a particular I of the following must be true? Assign the variable ans3	st of 10 15-vectors, it terminates in iteration 5 (since $\tilde{q}_5 = 0$). Which to either "a", "b", or "c", according to your answer choice.
	(a) a_2 , a_3 , a_4 are linearly independent.	
	(b) a_1 , a_2 , a_5 are linearly dependent.	
	(c) a_1 , a_2 , a_3 , a_4 , a_5 are linearly dependent.	
[]:	Ν	- ~
		-
		Manually graded answer
[]:	M	Manually graded task
		Autograded answer
		Autograder tests
		Read-only

V

Example 3: Multiple choice exercise

When the Gram-Schmidt algorithm is run on a particular list of 10 15-vectors, it terminates in iteration 5 (since $\tilde{q}_5 = 0$). Which of the following must be true? Assign the variable ans 3 to either "a", "b", or "c", according to your answer choice.

(a) a_2 , a_3 , a_4 are linearly independent.

(b) a_1 , a_2 , a_5 are linearly dependent.

(c) a_1 , a_2 , a_3 , a_4 , a_5 are linearly dependent.

In []:	ID: cell-7327ce4e	e63e7422t Autograded answer v
In []:	H	- v
		-
		Manually graded answer
		Manually graded task
		Autograded answer
		Autograder tests
		Read-only

V

Example 3: Multiple choice exercise

When the Gram-Schmidt algorithm is run on a particular list of 10 15-vectors, it terminates in iteration 5 (since $\tilde{q}_5 = 0$). Which of the following must be true? Assign the variable ans to either "a", "b", or "c", according to your answer choice.

(a) a_2 , a_3 , a_4 are linearly independent.

(b) a_1 , a_2 , a_5 are linearly dependent.

(c) a_1 , a_2 , a_3 , a_4 , a_5 are linearly dependent.

Assignment manager

♡ ± ||\ 0 =

0 1

jupyter

← → C
 ○ □ localhost8888/formgrader#
 ☆
 nbgrader
 Manage Assignments

								Search.				
Name 💵	Due Date ↓↑	Status 1	Edit	Generate	Preview	Release	Collect	# Submissions	11	Generate Feedback	Release Feedback	
eams-22- demo	None	draft	1	۵	Q			0				
Homework 1	None	draft	1	۵				0				
hw1	None	draft	1	ø	Q			7			×	
hw11	None	draft	1	2	Q			5		—	\bowtie	
hw12	None	draft	1	ø	Q			5		-	×	
hw15	None	draft	1	¢				0				
hw2	None	draft	1	¢	Q			8		—	\mathbf{X}	
hw3	None	draft	1	1	Q			8		•	×	
hw4	None	draft	1	ø	Q			7		P	×	
hw5	None	draft	1	ø	Q			7		•	×	
hw7	None	draft	1	P	Q			7		••	×	
hw8	None	draft	1	*	Q			7		-	×	
hw9	None	draft	1	ø	Q			4		—	×	

+ Add new assignment...

Grading/marking interface

Student's answer

(a) The goal of clustering a set of vectors is to choose the best vectors from the set
a44 = False
(b) The goal of clustering a set of vectors is to divide them into groups of vectors that are near each other
b44 = True
(c) The goal of clustering a set of vectors is to determine the nearest neighbors of each of the vectors
c44 = False
(d) The k-means algorithm always converges to a clustering that minimizes the mean-square vector-representative d
d44 = False
(e) The k-means algorithm can converge to different final clusterings, depending on the initial choice of represen
e44 = True
(f) The k-means algorithm is widely used in practice
f44 = True
(g) The choice of k, the number of clusters to partition a set of vectors into, depends on why you are clustering
g44 = True
(h) The choice of k, the number of clusters to partition a set of vectors into, should always be as large as your
h44 = False
##
()
Type any comments here (supports Markdown and MathJax)

In [19]:

cell-d5eb3033421ae1d6	Full credit No credit	0.5 🗘 / 0.5 + 0 🗘 (extra credit)
assert a44 == True or a44 == False ### BEGIN HIDDEN TESTS assert a44 == False ### END HIDDEN TESTS		

——Autograded exercise

Grading/marking interface

Returning graded/marked work

hw5 (Score: 10.7 / 11.0)	
--------------------------	--

1. Written response (Score: 2.0 / 2.0) 2. Written response (Score: 1.0 / 1.0) 3. Written response (Score: 1.0 / 1.0) 4. Written response (Score: 1.0 / 1.0) 5. Comment 6. Written response (Score: 1.0 / 1.0) 7. Test cell (Score: 0.5 / 0.5) 8. Test cell (Score: 1.0 / 1.0) 9. Test cell (Score: 1.0 / 1.0) 10. Written response (Score: 0.5 / 0.5) 12. Written response (Score: 0.5 / 0.5)

Applied Linear Algebra

Dr. Yuster

Homework 5 (Textbook Ch. 6-7)

In [1]: import numpy as np

Answer the questions below using Markdown or code cells as appropriate. Use LaTeX syntax for all mathematical expressions in your narrative (see this blog post for more information and tips). You'll find the VMLS Python Companion to be very helpful for the coding portions.

Questions marked with an exercise number (like 1.2) can be found in the textbook at the end of that chapter. Questions marked with the AE prefix (like AE 1.2) can be found in the Additional Exercises.

For coding portions, vectors should be represented as numpy arrays, and matrices should be represented as 2-D numpy arrays.

6.1 Matrix and vector notation. Answer all parts in the cell below.

HTML document -Attach to student's assignment submission in VLE/LMS

What I liked

- Homework in Jupyter notebooks loved the idea for this course!!!
- Easily combine written, computational, and coding problems
- Gentle introduction to LaTeX and markdown
- All free and open source tools
- Lightweight: Homework distributed as a single notebook file, no additional software installation for students

What I didn't like

- Solutions were automatically displayed in returned notebooks
 - <u>Configurable</u> in newest version of nbgrader?
- Imperfect LaTeX rendering in grading view
- Executing student code locally yikes!
 - It's possible to grade inside Docker containers
- Clunky workflow
 - Smoother with JupyterHub

3.20 Regression model sensitivity. (Hint: Use the Cauchy-Schwarz inequality)

Student's answer

Consider the regression model $\hat{y} = x^T \beta + v$, where \hat{y} is the prediction, x is a feature vector, β is a coefficient vector, and v is the offset term. If x and \hat{x} are feature vectors with corresponding predictions \hat{y} and \hat{y} show that $|\hat{y} - \tilde{y}| \le ||\beta|| ||x - \tilde{x}||$. This means that when $||\beta||$ is small, the prediction is not very sensitive to a change in the feature vector.

$$\begin{split} |\hat{y} - \tilde{y}| \\ &= |(x^T\beta + v) - (\tilde{x}^T\beta + v)| \\ &= |x^T\beta + v - \tilde{x}^T\beta - v| \\ &= |x^T\beta - \tilde{x}^T\beta| \\ &= |(x - \tilde{x})^T\beta| \\ \end{split}$$
Using the Cauchy-Schwarz inequality which says $|a^Tb| <= ||a||||b||$ we will get the following the following

Comments: Great work!

Student submission

LaTeX (non-) Rendering when Grading

Grading view

3.20 Regression model sensitivity. (Hint: Use the Cauchy-Schwarz inequality)

Score: 1.0 / 1.0 (Top)

Student's answer	Full credit	No credit	1 🗘 / 1.0	+ 0	ᅌ (extra credit)
Consider the regression model \$\\hat y = x^T β offset term. If x and \$\tilde x\$ are feature vector x-\tilde x \$. This means that when β is small	+ v\$, where ŷ is the prediction, with corresponding prediction II, the prediction is not very sens	x is a feature s ŷ and \$\tild sitive to a cha	vector, β is a co e y\$ show that \$ ange in the featu	efficient ve \hat y - \ti re vector.	ector, and v is the lde y <= β
\$ \hat y - \tilde y \$					
$ = (x^T\beta + v) - (\text{tilde } x^T\beta + v) $					
$ = x^T\beta + v - tilde x^T\beta - v $					
$ = x^T\beta - tilde x^T\beta $					
\$ = (x - \tilde x)^T β \$					
Using the Cauchy-Schwarz inequality which sa	ys \$ a^Tb <= a b \$ we will g	et the followi	ng:		
$ (x - tilde x)^T \beta \le \beta x - tilde x $					
					1
Great work!					

Changes for next time

Plan to try Otter Grader + Gradescope

Resources

- Project Jupyter (<u>https://jupyter.org/</u>)
- Online book: Teaching and Learning with Jupyter (<u>https://jupyter4edu.github.io/jupyter-edu-book/</u>)
- nbgrader (<u>https://nbgrader.readthedocs.io/en/stable/</u>)
- canvas2nbgrader (<u>https://github.com/patrickwalls/canvas2nbgrader</u>)
- Textbook: Introduction to Applied Linear Algebra- Vectors, Matrices, and Least Squares by Boyd and Vandenberghe (<u>https://web.stanford.edu/~boyd/vmls/</u>)
- Otter Grader (<u>https://otter-grader.readthedocs.io/en/latest/</u>)
- Gradescope (<u>https://www.gradescope.com/</u>)